PROBLEM SHORTLIST

with solutions



Problem 1. Prove that for every x e (0,1) the following inequality holds:

1
j\/1+ (cosy)2dy >+/x? + (sinx)?
0

}\/1+ (COSy)Zdy > )[C\/1+ (COSy)zdy .
0 0

Define a function F :[0,1] — R by setting:

F(x)= f\/1+ (cosy)?dy —+/x% +(sinx)? .
0

Since F(0) =0, it suffices to prove F'(x) = 0. By the fundamental theorem of Calculus, we have

F'(x)= \/1+(COSx X+SNxcosx
\/x +(S|nx)

Solution 1. Clearly

Thus, it is enough to prove that
(1+ (cosx)?)(x? +(sinx)?) = (x + sinx cosx)?.

But this is a straightforward application of the Cauchy-Schwarz inequality.

Solution 2. Clearly j1/1+ COSy J.d (cosy) dy for each fixed xe(0,1). Observe that
0

l+(COSy)2dy is the arc length of the function f(»)=siny on the interval [0, x] which is clearly

O Ty ¢

strictly greater than the length of the straight line between the points (O, O) and (x,Sinx) which in turn
. 2 . 2
is equal to 4/x +(S|nx)

Problem 2. For any positive integer 7, let the functions f, : R — R be defined by f,,1(x) = A(f, (%)),

where f1(x)=3x— 4x3. Solve the equation Jn(x)=0.

Solution. First, we prove that |x| >1l= |fn (x)| >1 holds for every positive integer n. It suffices to
demonstrate the validity of this implication for # = 1. But, by assuming |x| >1, it readily follows that
|f1(x)|=|x”3—4x2‘2‘3—4x2‘>1, which completes the demonstration. We conclude that every
solution of the equation f,(x)=0 lies in the closed interval [-11]. For an arbitrary such X, set

. . T T . .
x=8n¢ where t =arcsinx e [—E,E] . We clearly have f1(Sin7) =sin3r, which gives

f,(x)=sin3"¢t =din(3" arcsinx).



Thus, f,(x)=0 if and only if SIN(3"arcsinx) =0, i.e. only when 3"arcsinx =kz for some ke Z.
Therefore, the solutions of the equation f,,(x) =0 are given by
x=sintZ,
3

1-3 3 -1

where k acquires every integer value from 5 up to 5




Problem 3. For anintegern>2, let 4,B,C,De M, (R) be matrices satisfying:
AC-BD=1,,
AD+BC=0,,
where [ is the identity matrix and O, is the zero matrix in M, (R) .
Prove that:
a) CA-DB=1, and DA+CB=0,,,
b) det(4C)=>0and (-1)"det(BD)=0.
Solution. a) We have
AC—-BD+i(AD+BC) =1, & (A+iB)(C+iD)=1,,
which implies that the matrices A+iB and C+iD are inverses to one another. Thus,
(C+iD)(A+iB)=1, & CA-DB+i(DA+CB)=1,
< CA-DB=1,,DA+CB=0,,.
b) We have
det((4+iB)C) =det(AC +iBC)

AD+BC=0,
= det(4C—i4D)

=det(A(C —iD).
On the other hand,

(C+iD)(A+iB)=I,
detC = det((C +iD)(4+iB)C) = det((C +iD) A(C —iD))

= det(4) |det(C +iD) P .
Thus,
det(4C) = (detd)?|det(C+iD) = 0.
Similarly
det((A4+iB)D) = det(AD +iBD)

AD+BC=0,
=  det(—~BC+iBD)

= (-1)" det(B(C —iD)).

This implies that
(C+iD)(A+iB)=I,
detD = det((C +iD)(A+iB)D) = (-1)" det((C +iD)B(C —iD))

= (-1)"det(B) |det(C +iD) P .
Thus, (~1)"det(BD) = (detB)? |det(C+iD) P> 0.



Problem 4. Let / R be an open interval which contains 0, and f : I — R be a function of class

2181y such that £(0)=0, £/(0)=1 £”(0) = "(0) =...= £(®19) () = 0, 7(216) () < 0,
i) Prove that thereis 0 >0 such that
0< f(x)<x, Vxe(0,0). (1.1)
i) With 0 determined as in i), define the sequence (a,) by

a1=%, ayq=fla,), Vn=1 (1.2)

Study the convergence of the series Y. a,,, for re R.
n=1

Solution. i) We claim that there exists & >0 such that f(x)>0 for any xe (0,&). For this, observe

that, since f is of class ct and f’(0)=1>0, there exists >0 such that f’(x)>0 on (0,&). Since
f(@)y=0and 1 is strictly increasing on (0,), the claim follows.
Next, we prove that there exists >0 such that f(x)<x for any xe(0,/). Since

f(2016) (0)<0 and £ is of class C?18 there is S >0 such that f(2016)(t) <0, forany re (0,5). By
the Taylor's formula, for any xe (0, /3), there is 8 [0,1] such that

0 (2015) (2016) ¢
f(x)=7(0)+ fl(! betotd 2015!( 205 1 L 2016(! 2016, (1.3)

hence

(2016)
g(x) = L5580 2016 < 0, vxe (0,).

Taking & = min{e, #}> 0, the item i) is completely proven.
if) We will prove first that the sequence (a,,) given by (1.2) converges to 0. Indeed, by relation (1.1)
it follows that
O<a,1<a,, Vnz1,
hence the sequence (a,,) is strictly decreasing and lower bounded by 0. It follows that (a,) converges

to some (€ [O,é) . Passing to the limit in (1.2) , one gets ¢ = f (/). Taking into account (1.1), we deduce

that ¢ =0.

In what follows, we calculate
lim na5015.
n—oo

From a, 10, using the Stolz-Cesaro Theorem, we conclude that

. . . +1)— .
lim a2 = lim —2— = lim —= _ jim o
n—yoo n—00 5015 N—>% 2015 2015 N—>°° . 2015 2015
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Observe that, by (1.3)
X

— f(z:j::-é'@c) x2016(x2014 +x2013f(x)+...+f(x)2014) .

Since f is of class c?16  jim f(2016)(49x)=f(2016)(0) and
x—0

lim _FGD*® o161
0 x5 ()25 2015 £ (2016) )

It means, by the comparison criterion, that the series Za; and ) ~— converge and/or diverge

n=1 n=1,2015

simultaneously, hence the series Za,r, converges for r > 2015, and diverges for r < 2015.
n=1



