PROBLEM SHORTLIST
with solutions

Problem 1. Prove that for every $x \in(0,1)$ the following inequality holds:

$$
\int_{0}^{1} \sqrt{1+(\cos y)^{2}} d y>\sqrt{x^{2}+(\sin x)^{2}}
$$

Solution 1. Clearly

$$
\int_{0}^{1} \sqrt{1+(\cos y)^{2}} d y \geq \int_{0}^{x} \sqrt{1+(\cos y)^{2}} d y
$$

Define a function $F:[0,1] \rightarrow \mathbb{R}$ by setting:

$$
F(x)=\int_{0}^{x} \sqrt{1+(\cos y)^{2}} d y-\sqrt{x^{2}+(\sin x)^{2}} .
$$

Since $F(0)=0$, it suffices to prove $F^{\prime}(x) \geq 0$. By the fundamental theorem of Calculus, we have

$$
F^{\prime}(x)=\sqrt{1+(\cos x)^{2}}-\frac{x+\sin x \cos x}{\sqrt{x^{2}+(\sin x)^{2}}}
$$

Thus, it is enough to prove that

$$
\left(1+(\cos x)^{2}\right)\left(x^{2}+(\sin x)^{2}\right) \geq(x+\sin x \cos x)^{2} .
$$

But this is a straightforward application of the Cauchy-Schwarz inequality.

Solution 2. Clearly $\int_{0}^{1} \sqrt{1+(\cos y)^{2}} d y \geq \int_{0}^{x} \sqrt{1+(\cos y)^{2}} d y$ for each fixed $x \in(0,1)$. Observe that $\int_{0}^{x} \sqrt{1+(\cos y)^{2}} d y$ is the arc length of the function $f(y)=\sin y$ on the interval $[0, x]$ which is clearly strictly greater than the length of the straight line between the points $(0,0)$ and $(x, \sin x)$ which in turn is equal to $\sqrt{x^{2}+(\sin x)^{2}}$.

Problem 2. For any positive integer n, let the functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f_{n+1}(x)=f_{1}\left(f_{n}(x)\right)$, where $f_{1}(x)=3 x-4 x^{3}$. Solve the equation $f_{n}(x)=0$.

Solution. First, we prove that $|x|>1 \Rightarrow\left|f_{n}(x)\right|>1$ holds for every positive integer n. It suffices to demonstrate the validity of this implication for $n=1$. But, by assuming $|x|>1$, it readily follows that $\left|f_{1}(x)\right|=|x|\left|3-4 x^{2}\right| \geq\left|3-4 x^{2}\right|>1$, which completes the demonstration. We conclude that every solution of the equation $f_{n}(x)=0$ lies in the closed interval $[-1,1]$. For an arbitrary such x, set $x=\sin t$ where $t=\arcsin x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. We clearly have $f_{1}(\sin t)=\sin 3 t$, which gives

$$
f_{n}(x)=\sin 3^{n} t=\sin \left(3^{n} \arcsin x\right) .
$$

Thus, $f_{n}(x)=0$ if and only if $\sin \left(3^{n} \arcsin x\right)=0$, i.e. only when $3^{n} \arcsin x=k \pi$ for some $k \in \mathbb{Z}$. Therefore, the solutions of the equation $f_{n}(x)=0$ are given by

$$
x=\sin \frac{k \pi}{3^{n}}
$$

where k acquires every integer value from $\frac{1-3^{n}}{2}$ up to $\frac{3^{n}-1}{2}$.

Problem 3. For an integer $n>2$, let $A, B, C, D \in M_{n}(\mathbb{R})$ be matrices satisfying:

$$
\begin{aligned}
& A C-B D=I_{n}, \\
& A D+B C=O_{n},
\end{aligned}
$$

where I_{n} is the identity matrix and O_{n} is the zero matrix in $M_{n}(\mathbb{R})$.
Prove that:
a) $C A-D B=I_{n}$ and $D A+C B=O_{n}$,
b) $\operatorname{det}(A C) \geq 0$ and $(-\mathrm{l})^{n} \operatorname{det}(B D) \geq 0$.

Solution. a) We have

$$
A C-B D+i(A D+B C)=I_{n} \Leftrightarrow(A+i B)(C+i D)=I_{n},
$$

which implies that the matrices $A+i B$ and $C+i D$ are inverses to one another. Thus,

$$
\begin{aligned}
(C+i D)(A+i B)=I_{n} & \Leftrightarrow C A-D B+i(D A+C B)=I_{n} \\
& \Leftrightarrow C A-D B=I_{n}, D A+C B=O_{n} .
\end{aligned}
$$

b) We have

$$
\begin{aligned}
\operatorname{det}((A+i B) C) & =\operatorname{det}(A C+i B C) \\
A D+B C & =O_{n} \\
& =\operatorname{det}(A C-i A D) \\
& =\operatorname{det}(A(C-i D) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
C & \stackrel{(C+i D)(A+i B)=I_{n}}{=} \operatorname{det}((C+i D)(A+i B) C)=\operatorname{det}((C+i D) A(C-i D)) \\
& =\operatorname{det}(A)|\operatorname{det}(C+i D)|^{2} .
\end{aligned}
$$

Thus,

$$
\operatorname{det}(A C)=(\operatorname{det} A)^{2}|\operatorname{det}(C+i D)|^{2} \geq 0
$$

Similarly

$$
\begin{aligned}
& \operatorname{det}((A+i B) D)=\operatorname{det}(A D+i B D) \\
& A D+B C=O_{n} \\
&=\operatorname{det}^{(-B C+i B D)} \\
&=(-1)^{n} \operatorname{det}(B(C-i D)) .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
\operatorname{det} D & \stackrel{(C+i D)(A+i B)=I_{n}}{=} \\
& =(-1)^{n} \operatorname{det}\left((B)|\operatorname{det}(C+i D)|^{2} .\right.
\end{aligned}
$$

Thus, $(-1)^{n} \operatorname{det}(B D)=(\operatorname{det} B)^{2}|\operatorname{det}(\mathrm{C}+i D)|^{2} \geq 0$.

Problem 4. Let $I \subset \mathbb{R}$ be an open interval which contains 0 , and $f: I \rightarrow \mathbb{R}$ be a function of class

$$
C^{2016}(I) \text { such that } f(0)=0, f^{\prime}(0)=1, f^{\prime \prime}(0)=f^{\prime \prime \prime}(0)=\ldots=f^{(2015)}(0)=0, f^{(2016)}(0)<0
$$

i) Prove that there is $\delta>0$ such that

$$
\begin{equation*}
0<f(x)<x, \quad \forall x \in(0, \delta) \tag{1.1}
\end{equation*}
$$

ii) With δ determined as in i, define the sequence $\left(a_{n}\right)$ by

$$
\begin{equation*}
a_{1}=\frac{\delta}{2}, a_{n+1}=f\left(a_{n}\right), \forall n \geq 1 \tag{1.2}
\end{equation*}
$$

Study the convergence of the series $\sum_{n=1}^{\infty} a_{n}^{r}$, for $r \in \mathbb{R}$.

Solution. i) We claim that there exists $\alpha>0$ such that $f(x)>0$ for any $x \in(0, \alpha)$. For this, observe that, since f is of class C^{1} and $f^{\prime}(0)=1>0$, there exists $\alpha>0$ such that $f^{\prime}(x)>0$ on $(0, \alpha)$. Since $f(0)=0$ and f is strictly increasing on $(0, \alpha)$, the claim follows.

Next, we prove that there exists $\beta>0$ such that $f(x)<x$ for any $x \in(0, \beta)$. Since $f^{(2016)}(0)<0$ and f is of class C^{2016}, there is $\beta>0$ such that $f^{(2016)}(t)<0$, for any $t \in(0, \beta)$. By the Taylor's formula, for any $x \in(0, \beta)$, there is $\theta \in[0,1]$ such that

$$
\begin{equation*}
f(x)=f(0)+\frac{f^{\prime}(0)}{1!} x+\ldots+\frac{f^{(2015)}(0)}{2015!} x^{2015}+\frac{f^{(2016)}(\theta x)}{2016!} x^{2016} \tag{1.3}
\end{equation*}
$$

hence

$$
g(x)=\frac{f^{(2016)}(\theta x)}{2016!} x^{2016}<0, \quad \forall x \in(0, \beta)
$$

Taking $\delta=\min \{\alpha, \beta\}>0$, the item i) is completely proven.
ii) We will prove first that the sequence $\left(a_{n}\right)$ given by (1.2) converges to 0 . Indeed, by relation (1.1) it follows that

$$
0<a_{n+1}<a_{n}, \quad \forall n \geq 1
$$

hence the sequence $\left(a_{n}\right)$ is strictly decreasing and lower bounded by 0 . It follows that $\left(a_{n}\right)$ converges to some $\ell \in\left[0, \frac{\delta}{2}\right)$. Passing to the limit in (1.2), one gets $\ell=f(\ell)$. Taking into account (1.1), we deduce that $\ell=0$.
In what follows, we calculate

$$
\lim _{n \rightarrow \infty} n a_{n}^{2015}
$$

From $a_{n} \downarrow 0$, using the Stolz-Cesàro Theorem, we conclude that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n a_{n}^{2015} & =\lim _{n \rightarrow \infty} \frac{n}{\frac{1}{a_{n}^{2015}}}=\lim _{n \rightarrow \infty} \frac{(n+1)-n}{\frac{1}{a_{n+1}^{2015}}-\frac{1}{a_{n}^{2015}}}=\lim _{n \rightarrow \infty} \frac{1}{\frac{1}{f\left(a_{n}\right)^{2015}}-\frac{1}{a_{n}^{2015}}} \\
& =\lim _{x \rightarrow 0} \frac{1}{\frac{1}{f(x)^{2015}}-\frac{1}{x^{2015}}}=\lim _{x \rightarrow 0} \frac{(x f(x))^{2015}}{x^{2015}-f(x)^{2015}} .
\end{aligned}
$$

Observe that, by (1.3) $\frac{(x f(x))^{2015}}{x^{2015}-f(x)^{2015}}=\frac{\left(x^{2}+\frac{f^{(2016)}(\theta x)}{2016!} x^{2017}\right)^{2015}}{-\frac{f^{(2016)}(\theta x)}{2016!} x^{2016}\left(x^{2014}+x^{2013} f(x)+\ldots+f(x)^{2014}\right)}$.
Since f is of class $C^{2016}, \lim _{x \rightarrow 0} f^{(2016)}(\theta x)=f^{(2016)}(0)$ and

$$
\lim _{x \rightarrow 0} \frac{(x f(x))^{2015}}{x^{2015}-f(x)^{2015}}=-\frac{2016!}{2015 f^{(2016)}(0)}>0
$$

It means, by the comparison criterion, that the series $\sum_{n=1}^{\infty} a_{n}^{r}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{r}{2015}}}$ converge and/or diverge simultaneously, hence the series $\sum_{n=1}^{\infty} a_{n}^{r}$ converges for $r>2015$, and diverges for $r \leq 2015$.

